Characterizations of Clifford semigroup digraphs

نویسندگان

  • S. Panma
  • N. Na Chiangmai
  • Ulrich Knauer
  • Srichan Arworn
چکیده

This paper characterizes directed graphs which are Cayley graphs of strong semilattices of groups and, in particular, strong chains of groups, i.e. of completely regular semigroups which are also called Clifford semigroups. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivations on Certain Semigroup Algebras

In the present paper we give a partially negative answer to a conjecture of Ghahramani, Runde and Willis. We also discuss the derivation problem for both foundation semigroup algebras and Clifford semigroup algebras. In particular, we prove that if S is a topological Clifford semigroup for which Es is finite, then H1(M(S),M(S))={0}.

متن کامل

p-Analog of the Semigroup Fourier-Steiltjes Algebras

In  this paper we define the $p$-analog of the restericted reperesentations and also the $p$-analog of the Fourier--Stieltjes algebras on the inverse semigroups . We improve some results about Herz algebras on Clifford semigroups. At the end of this paper we give the necessary and sufficient condition for amenability of these algebras on Clifford semigroups.

متن کامل

CHARACTERIZATIONS OF EXTREMELY AMENABLE FUNCTION ALGEBRAS ON A SEMIGROUP

Let S be a semigroup. In certain cases we give some characterizations of extreme amenability of S and we show that in these cases extreme left amenability and extreme right amenability of S are equivalent. Also when S is a compact topological semigroup, we characterize extremely left amenable subalgebras of C(S), where C(S) is the space of all continuous bounded real valued functions on S

متن کامل

Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory

We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorph...

متن کامل

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 306  شماره 

صفحات  -

تاریخ انتشار 2006